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Abstract— In this work, we propose a direct-adaptive MRAC
for relative-degree-unity SISO systems with unknown control
direction. The proposed scheme, employing an original con-
struction of the control law and the use of an adaptive observer,
achieves the long-searched objective of injecting, through the
input, the unmeasurable derivative of the output error. The
output derivative injection is performed by a smart construction
of the control input that features a Parameter-dependent Input
Normalization (PIN). The PIN scheme does not make use
of Nussbaum functions usually invoked in the direct-adaptive
setting, does not require persistence of excitation of indirect
adaptive schemes, does not require switching between multiple
models, does not suffer from singularities and does not require
to know a-priori bounds on the norm of the high-frequency
gain and on the parameters. Effectiveness of the algorithm is
illustrated by a numerical example.

I. INTRODUCTION

As one of the main approaches to adaptive control, Model
Reference Adaptive Control (MRAC) has been extensively
studied over the half past century, due to its both theoretical
and practical significance. Among various approaches de-
veloped under MRAC framework (see [1][2] and references
therein), direct MRAC scheme has attracted considerable
amount of attention since it bypasses the estimation of pa-
rameters and states of plant, instead, achieves the asymptotic
tracking of desired output signal via direct adaptation of the
controller parameters. However, despite the intrinsic simplic-
ity and effectiveness of the idea of direct adaptation, the
output-error parameterization essentially leads to a bilinear
regression form [3], where the high frequency gain, denoted
by b in the sequel, appears multiplying the controller param-
eters. The vast majority of widely recognized direct MRAC
methods, including the celebrated augmented error-based
approaches, overcome this bilinear difficulty by assuming the
sign of the high frequency gain is known in advance. This
assumption severely hampers the implementation of direct
MRAC to engineering applications with unknown control
direction [4][5] and makes the extension to MIMO system
more challenge.

The necessity of prior knowledge of control direction
was first questioned by Morse [6], in which he conjectured
that no rational controller exists capable of adaptive stabi-
lizing an uncertain system without knowing the sign of b.
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Breakthrough comes with the Nussbaum’s idea of employing
an oscillating gain function [7] that changes the estimator
vector filed periodically. In spite of many efforts [8][9][10]
have been devoted to researching and advancing the class
of Nussbaum-type control and adaptive laws, it is argued in
[11][12] that this kind of algorithms is only of theoretical
interest since the recurrent destabilization adaptation leads
to an inferior transient behaviour which is practical inadmis-
sible. Alternative solution to avoid knowing the sign of b is
to adopt a switching projection [13]. However, the erratic
behaviour brought by possible non-stop switching and the
issue of unverifiability PE assumption on the regressor signal
has not been solved yet. A dynamic regressor extension and
mixing estimators-based (DREM-based) scheme reported
in [14] ensures the switching happens at most once via
exploiting the monotonicity of the parameter estimation error.
Nevertheless, the global tracking can only be guaranteed
for a sufficiently rich reference signals, which in general
unrealistic for a MRAC problem. In this context, we believe,
the issue concerning the high-frequency gain assumption
made in MRAC remains open and seems far from settled.

In this paper, a classic direct MRAC design problem
without the prior knowledge of high frequency gain is ad-
dressed for a LTI SISO system with relative degree one. We
proposed a novel PIN-based controller along with an original
derivative injection gain function that achieves the injection
of the derivative of tracking errors via input. In this way, an
algebraic linear-in-the parameter error equation is obtained,
which plays a key role in developing the adaptive estimator
for the unknown parameters, including the high frequency
gain. Compared with the state-of-art solutions in the liter-
ature [14][15], the proposed adaptive control scheme is of
great importance due to the following distinctive features: 1)
the transient behaviour is significantly improved by avoiding
any Nussbaum gain-like oscillation function; ii) the control
gain function solves the singularity issue without imposing
any projection operator on the parameter estimation, which
means no lower or upper bound on any unknown parameter is
required to be known prior; iii) No persistence excitation or
sufficiently rich requirement is needed for the regressor and
reference signals. Additionally, in spite of the relatively high
dimension, the proposed is actually a rather simple algorithm
to implement and tune, as the parameter estimators share the
same one adaptation gain which ensures the stability with all
positive values.

The remainder of the paper is organized as follows.
Section II formulates the MRAC problem addressed. To
help the reader capture the key ideas underlying the novel
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PIN scheme, in Section III, we presented a controller along
with some adaptive laws that is easy to understand but
characterized with some implementation issues. Then, an
realizable PIN scheme is given in Section IV that solves the
aforementioned issues and achieves the objective of asymp-
totic tracking. Section V illustrating the performance of
the proposed PIN-MRAC scheme via a numerical example.
Finally, the paper is wrapped-up with concluding remarks in
Section VI.

In following sections, for the benefit of the reader, all
the equations relevant to the implementation of the PIN
adaptive controller will be marked by a gray background .
In particular, we will highlight relevant formulas involving
filtering of the regressor, parameter adaptation and definition
of the control input.

Notation: Throughout this paper, we use the compact
double-squared bracket notation to denote the image of an
integrable signal z(t) under the Laplace transform, z(s) =

[z()] = L{z}(s).
II. PROBLEM FORMULATION
Consider a LTI SISO system described by

y(e) = Io(®] = b33 (o) m

where u,y € R denote the plant input and output, respec-
tively. The polynomials N (s) and D(s) are monic, coprime
polynomials with unknown coefficients. The constant scalar
parameter b, commonly referred to as “high frequency gain”
is assumed unknown in this work. The following assumptions
regarding the plant are formulated:

(A.1) the degrees m and n of N(s) and D(s), respectively,
are known and p := n—m = 1 (relative degree unity);
(A.2) the polynomial N(s) is Hurwitz.

Compared to assumptions made in the standard MRAC
problem [16], [13], here we note by its absence is the as-
sumption of prior knowledge of the high-frequency gain b. In
this work, not only the sign of b is not needed, but also avoid
any prior information on the lower or upper bounds of the
value of b, which is usually needed in the methods [14][13]
involving switching projection. Completely eliminating this
assumption without resorting to any Nussbaum-like functions
is the main subject of interest of this paper.

The objective of MRAC is to determine a bounded control
input u(t) using a differentiator-free controller such that the
trajectories of the closed-loop system are bounded and the
output y(¢) of the controlled plant tends asymptotically to
the output y,.(t) of the reference model

() = 5O @

where r(t) is termed “reference command” and assumed to
be a uniformly-bounded piece-wise continuous function of
time, and D,.(s) is a Hurwitz monic first-order polynomial
having the form

D.(s)=s+p

with p > 0. Without loss of generality, we have selected a
first order reference model with no zeros, which is typically
adopted in MRAC scheme. The controller presented in the
sequel can be extend verbatim for a general SPR reference
model.

Using the well-known results from linear adaptive control
theory, we can express the tracking error

(1) = y(t) —yr (1)

in the so-called Elliot’s parameterization [16] form

y=—pj+b(—=£"0+u), §(0)=y0)—y(0) O

where § € R?"*1 is a vector of unknown constant parameters
and ¢ € R?"T1 is a vector of regressors obtained by collating
the reference signal with filtered input and output signals
reference by

1

€u(s) = L_s)[l s ... s"H()][u(®)] €R,

§6) =ggls ool er, @

€T (t) = [€a (t) & (1) r(t)] € R*"HY,

where L(s) an arbitrary Hurwitz polynomial of order n given
by:
L(s)=s"+ ap_18" V+ -+ a8+ ap.

Here, note that we have used the parametrization form
of adaptive control due to Elliot, in which the regressors
are obtained by filtering the input-output with filters of
n-th order, in place of the more common parametrization
that uses regressors obtained through filters of order n —
1 plus a direct feedthrough from the plant output. The
parametrization of Elliott is discussed in Paragraph 9.4.1 of
[16] in the context of direct-adaptive pole placement and in
Paragraph 10.6.1 of the same book in the design of adaptive
controllers for multivariable systems. Notably, it does not
introduce overparametrization compared to the conventinonal
parametrization.

Elliott’s parametrization of adaptive controllers represents
the dual formulation of the more famous Kreisselmeier
parametrization used to solve the adaptive observer problem
[17]. A state-space realization of the filters (4) is given by
the so-called K-filters (Kreisselmeier):

£.(0) eR”
&(0) e R”

éu:Ffu‘i’guv
Sy:nyJrgy,

where (F,g) is a pair of matrix verifying L(s) = det(s] —
F)’1 g. For instance, one may choose

—Qp-1 —Qp-2 —Qp-3 ... —Qp 1
1 0 0 0 0

p_| 0 1 (I
0 0 1 0 0

in a controllable canonical form. In this work, the use of
Elliot parametrization is not mandatory, one can also choose
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the usual form of the regressors vector of dimension 2n,
where L(s) is a Hurwitz polynomial of degree n — 1 and
ET(t) = [u(t) & (t) y(t) & (t) r(t)]. In the forthcoming
analysis, when clear from the context, the time arguments
of function are omitted for brevity.

Posing 9 := b6 in (3), we get the tracking error equation

§=—pj—E"0+bu. (5)

Multiplying both sides of (5) by 3 := b~! to obtain the key
tracking error equation

By =—pBy—E"0+u (6)

It is apparent from this equation that, compared to conven-
tional adaptive control, the uncertainty now entering the left-
hand-side through the unknown constant S affect in particular
the tracking error derivative 7. The underlying idea of the
proposed scheme is to inject, through the input, a signal
that contains ¢ in order to cancel this derivative-dependent
uncertainty.

ITI. THE PIN SCHEME: OUTPUT ERROR DERIVATIVE
INJECTION THROUGH PARAMETER-DEPENDENT INPUT
NORMALIZATION

The aim of this section is that of explaining the key logic
underlying the proposed controller. To convey the main ideas
of the PIN scheme, we first assume the output derivative g
is available. Clearly, this is just a temporary relaxation of
assumptions with the sole intention of making the reader
approaching gradually the ultimate formulation.

Different from conventional adaptive laws, the proposed
control input is constructed with a parameter-dependent
normalization as follows

we 1 (gTé+%§Tq§) , %

1+

where 6,0 € R2"1 3 € R denote the estimates of the
parameters 6, 9, b, 8 respectively, and s : (t,B,I;) — R
is a gain function of the estimated parameters that will be
designed later. ¢ represents a key component of the scheme
and is named as the Derivative Injection Gain. We will
justify its name in the following lines. Indeed, by rearranging
the expression (7) for the control law we get

u = Etpxy + §Té+%§T1§— sbu.
= —puf+E 0 (—pgj—fﬂ%— (;u) + 2.
to which we added and subtracted terms pscy and {43} to the
right-hand side of the equation, so that, by defining b := b—b
and ¢ := 9 — 9, together with (5), we can further write
U = —p%g]+§Té—%(—§T?§+ Bu) —%ﬂ )
= —pxy + fTéJr%fT&f scbu — P

where it stems clear that »» modulates the injection of the
tracking error derivative in the control signal. Substituting
(8) in (6), one has:

(B+ )i = pBy — p(B + )7+ ET0 + 570 — sbu

with B = B — S and é:: 6 — 6. Moreover, using again the
relation that 5 = 8 — (3 to obtain the key expression:

(B + )i = By — p(B + 3)§+pBI+E "0 + 5& "0 scbu

and finally
) ~ L+p y ~ 1
G=—pi+ S Bt
B+ B+
The above expression is a standard error equation which calls
for the following adaptation laws

To-- 2L p (9

€To+—=
B+

B+

A 1% - o\~

= —= +
ff ﬂ+%(y py) G
g = - ¢
. bE (10)
o= == #87
. B+
b = A'u uy

B+

with y is a positive adaptation gain. Following standard SPR-
Lyapunov arguments in [13, Chapter4] and considering the
following Lyapunov function

gZ éTé

9T b+ B2
2u 21

it is immediate to see that adaptive law (10) for (9) guaran-
tees that y — 0 as ¢ goes to infinity. The detailed proof is
omitted here due to space limitation.

We underscore the fact that, to have an implementable
control of (8) and non-singular adaptation laws of (10), we
need to design the derivative injection gain s to ensure that
both 1 + sb # 0 and B+ # 0, for any possible real value
of b and §. By choosing the following expression for the
derivative injection gain sz, which is discontinuous in B

- (|B ‘ + ﬂ) ) B <
» = A R
(IB |+ 1) , b=
with 3¢ > 0 arbitrary, we achieve both tasks.

While by the aforementioned formulation (9), the mech-
anism proposed in this section that permits to realize the
output-derivative-injection can be easily understood, it has
two main drawbacks:

1) in this setup, we cannot guarantee a finite dwell-time
for the discontinuous output-injection gain s since we
cannot exclude that b exhibits high-frequency zero-
crossings.

2) Noting that the adaptation law for B contains the
term ﬁ, it stems clear that this formulation cannot be
trivially extended to the more common case where 7
is unavailable.

We will overcome both these issues in next section by
modifying the PIN control input with a parameter-derivative
injection and by assigning to s a hysteretic behavior.
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IV. REALIZABLE PIN SCHEME THROUGH PARAMETER
DERIVATIVE INJECTION AND HYSTERESIS

Injecting the parameter derivatives through the control
input, weighted by filtered regressors, is a typical provision
adopted to implement adaptive schemes for relative degree-
two system, transforming them into equivalent relative-
degree one system that can be tackled by standard methods.
The interested reader can refer to Paragraph 5.4.3 of [16] for
an insight on such a methodology. Here, we will resort to
an analogous procedure to overcome the unavailability of .
Let us introduce a vector of extended parameter vector

¢T — [67 OT,”@T, b] c R4n+4
and a vector of filtered regressors

w' = [wpg,w, ,wy ,wy] € RH (11)
where each component is generated by filtering the regressor
signals appearing in (9) as

y+py

wg = —pwg+ = , wg(0) eR (12)
B B B+ B
T
wp = —pwy+ = , Wo (O) e Rn+!
B+
. e’ 2n+1
wy = —pwy+ = , wy(0)eR (13)
B+
wp = —pwp— ——0, wb(O) € R.
B+ 5

Note that, while we have marked in gray the filtered dy-
namics (13), since these filters represent the final machinery
to obtain the correspondent filtered regressors, we have not
marked (12). Indeed, an easier to implement expression for
wg, not involving the differentiation of gj, will be given later
in (19).

Now, denoting the estimates of ¢ by the parameter vector
¢T :=[3,67,07,b], we propose a realizable PIN control
input takes the form of

1
1—|—%IA7

u = (5T9+%§T1§ o %)quE) (14)
where, compared to (7), we have introduced the additional
term (53 + sc)w T ¢ containing the derivative of the estimation
parameter vector (ﬁT whose adaptive law will be given later
by (20) and (22). Again, following the similar procedure in
(8), we can rewrite (14) as

u = —pxf+ fTé+%§T1§— scbu — i) + (B + %)w—rqg (15)

Plugging (14) into the error equation (6) we obtain

where we have used the notation ¢~> = gf) — ¢ for the extended
parameter error vector, yielding to the algebraic linear-in-the
parameter expression

j=w'o, an
which is central in deriving the parameter adaptation law for
the system.

Next, we will exploit the freedom in designing the injec-
tion term ¢ to enforce finite dwell-time guarantees on its
discontinuous dynamics, relying on a hysteretic switching
logic. It will turn out that s will be left-discontinuous in
time exhibiting jumps of finite amplitude. In this connection,
let us make the following choice for s:

%:lA)—I—%h

with ¢, to be designed. With this choice, to avoid singular-
ities in the PIN control law and in the right-hand sides of
(13), we need to choose s, such that

14 sb=1+b+ by £0,

and

B+se=pB+b+ s #0,

for any possible value of b, 3. Now, for any s, : |sen] <1
it holds that 1+ b2 + IA)%h > %, for any possible real value of
b. Moreover, let us assign the following hysteretic switching
dynamics to s:

(=1, B(0)+b(0) < L
”h<0)_{ 1 B0)+h(0) > 1
-1, Bt)+b(t) < -1
() =14 1, Bt)+b(t) > 5 ,t>0
(7)), —3 < BE)+b(t) < 3

where s, (t7) := lim 3, (7) denotes the left-hand limit of
v
the function sz, atT time t. Thanks to the above choice, we

have that |3 + b+ s,| > 1/2, for any real 3, b.

Having assigned a specific formulation to ¢, we can now
proceed by clarifying how it is possible to overcome the
unavailability of 7 in the right-hand side of (12). Indeed,
we will show that all the elements of the filtered regressors
vector w are computable from known quantities without
direct differentiation. While this is obvious for wgy, wy and wy,

L G+pi 1+ % 1z xu > T+ some additional algebra is needed to show that also wg can
y=-—py+ B +%ﬁ + B _1_%5 0+ B + %§ Lo B +%b—|—w ¢ be obtained without differentiation. In particular, we show
T7 . T3 that the evolution of wg(t) can be obtained through causal
=w otw ¢ (16) " filters plus with a direct-feedthrough term from 7. Referrin
p g Yy g
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to the differential equation of wg in (12), it holds

w _ e p(t—7) p}'j(,r) + g(T) dr
o J 3(r) + (1)
[, K10
B+ () B+ () B(0) +#(0)
- ferren | 2 - A 0 ) (eyar
)+ (3(r) + #(r))

where we have used the formula of the integration by parts.
Recalling the relation s = b + 7, it follows that

ws(t) = = g(t) — 5(0) e Pt
Bty + (1) B(0) +(0)
+/tep(t7) B( )+b( )+ dT #n(7) g(T)dr.
0 (B(r) + (7))

Note that the term involving the time derivative of sz, in
above equation can be further written as

/te_p(t ™) —d #n(7) sy(T)dT
0 (Br) +5(n))

Z / —p(t—7) QU;L(t(;)(s(T —t5) §(r)dr
ts€TA (/B( )+%( ))

S O L IR/ Y777 SO
ts€TA (ﬂ((té)) + %((t(s)))

where d(-) is the Dirac’s delta operator, Ta := {t € R> :
wp,(t) # »,(t7)} is the set containing all the time instants in
which s, (t) exhibits a jump, while oy, (t) := sign(se,(t) —
s, (t~1)) is a left-discontinuous function that encodes the up-
fronts or down-fronts of s¢;,. Substituting (18) into ws(t) and
neglecting the exponentially fading term —Woim) —pt
the signal wg(t) takes the form

o= IOy BE b
o0 =5t G2
+3 e | 204 (ts) | dtes).

ts€Ta (ﬂ(t&) + %(t5)>

More conveniently, it is implementable by the formula

with w/lB(O) = 0, while w:@/ (t) can be obtained by the left-
discontinuous dynamics

g (t) = —pwy(t), t & T,

7" _ 1" _ 20 (t)) ~
t) = t TR t tel,
wﬁ( ) wﬁ( ) + <(,8(t))+%(t))) ) y( )7 € 1A,

with wg (0) = 0. Note that from a practical standpoint, in
order to detect whether the current ¢ belongs to Ta it is
sufficient to check, if s, which is an available synthetic
signal, exhibits a jump between —1 to 1 or vice-versa.
Moreover, the hysteretic dynamics assigned to s, ensures
that two jumps have a minimum finite time-separation.

After previous derivations, we are now in position to
construct the adaptation law for the parameter estimates qAS
The linear-in-the parameters expression (17) may, in princi-
ple, suggest to adopt the following conventional normalized
adaptive law for relative-degree-0 systems:

X . w -
¢ = Moo
with 1 > 0 a user-defined scalar constant used to tune the
speed of adaptation. However, due to the jump discontinuities
of w, the use of such an adaptation mechanism does not fit
the requirement of uniform continuity needed in the adaptive
context to apply the Barbidlat Lemma or Lyapunov-Like
stability results. To overcome this issue and streamline the
proof of stability let us introduce a further filter
yr = —pis + =50 (20)
with initial condition §;(0) = g(0). In view of (17), the
right-hand-side of (20) can be expressed in terms of the
parameter error

1 T"’
——w'¢. 21
T ¢ 21

This relative-degree-1 dynamics calls for the following adap-
tive law

Uy = —pijs +

6 = —prrr - (22)

where normalization, not required in a conventional relative-
degree-1 setting, is needed here to ensure the boundedness of
the normalized regressors, to allow later on the application of
the Song-and-Tao’s higher-order asymptotic stability result
[18]. In the sequel, the stability analysis of the proposed
scheme will be performed using the following well-known
result, that descends from Barbilat’s Lemma:

Lemma 4.1: (Lyapunov-Like Lemma [19]) If a scalar
function V (¢, ) satisfies the following conditions:

o V(t,z) is lower bounded

o V(t,z) is semi-negative definite
o Vi(t,z)is umformly continuous in time

) =

)= =28 _ o (8) 4+ wy(t 1
W) = Gy T s +wp(®), 12 then V (t,x
where wlﬁ (t) is given by the linear filter Choosing the candidate Lyapunov function
V= % gj% + inST gf;) , after trivial algebra we obtain
o —pwy + B(r)+b(r) i(1), )
5 (B(r)+(n))? V=-pj; <0.
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—Nussbaum
2 —DREM
= 1 —PIN i
> 0
-1 ‘ ‘ ‘ ‘ 4
0 100 200 300 400 500
Time[s]
Fig. 1. Comparison of the time behaviour of tracking error.
1 X 10% .
0
= |
0 200 400 600 800
Times|s]

Fig. 2. Time behaviour of the tracking error §(¢) of Nussbaum-gain-based
method[16].

Since gy is uniformly continuous, in view of the Lyapunov-
Like Lemma it can be proven that 7 =2 0. A further

step is needed to prove that y o2 O Very recently,
Song and Tao in [18] and [20] have shown that by us-
ing conventional MRAC schemes it possible to extend the
global convergence property to higher-order derivatives of
the tracking error. In particular Corollary 3.1 of [18] can
be invoked to establish that, being (21) relative-degree-unity,
the parameters bounded as well as the normalized regressor
vector ﬁoﬂ, it holds that
yf — 0 = gy —0

t—o00 t—o0
which indicates the control objective of MRAC problem is
achieved.
V. NUMERICAL EXAMPLE

In this section, we present simulation results to illustrate
the effectiveness of the proposed PIN MRAC method.The

300
200 ]
% 100 ¢ 1
0
-100 ‘ ‘ ‘
0 200 400 600 800
Times[s]
Fig. 3. Time behaviour of the tracking error §(t) of DREM-based

MRACI14].

2 |
;*—;/ 0
—b
—
2L s ‘ s 3
0 200 400 600 800
Times|s]

Fig. 4. Time behaviour of the tracking error §(t) of the PIN-MRAC.

5
s 0
-5 1 | I
0 200 400 600 800
Times|[s]
Fig. 5. Time behaviour of the control input u(t) of the PIN-MRAC.

proposed algorithm is compared with a classical scheme
using a Nussbaum-gain [16, Chp 9] and a recently developed
DREM-based technique[14]. The Runge-Kutta integration
method has been employed for all simulations with fixed
sampling interval T, = 1073s. Consider a stable second-
order system

s+ b
] =b—————Ju(t
[y(t)] = b [u(t)]
with unknown parameters by = 1, a; = 2.1, ap = 0.2 and
b = —1. The reference model is given by
1
m(t) = t
gnt) = 70

that is p = 1, and the reference signal r(t) = sint to be
tracked is not sufficiently rich.

The initial conditions of the plant and reference model are
taken as y(0) = 2 and y,(0) = 0, leads to 7;(0) = 2. The
regressor signal given by (4), (13) and (19) are all initialized
with zeros. The filter L(s) is selected as L(s) = s? +3s+2.
The tuning gains are chosen as g = 1. By assigning
$T(0) = [~1, 01x10, —1], we underscore the fact this is
indeed a stringent test, as the simulation is performed taking
into account for the wrong initial guess of control direction.
For the fair of comparison, the tuning parameters( ;o = 1
for j = 1,2..5, k, = 0.1) and initial conditions 6(0) =
[—10,10, —5, 5] of the other two methods are selected after
a process of trial-and-error to achieve similar transient and
steady state behaviour.

As shown in Fig.1, Nussbaum-gain-based MRAC has a
slight slower converge speed, but all three methods succeed
in tracking the output of the reference model given a wrong
initial guess of the control direction. Using exactly same set
of initial conditions and tuning parameter, we now consider
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a more challenging case in which the high frequency gain b
features an abrupt change of sign at 400s.

,_ | —1 ifte[0,400)
T 1 ift € [400,800]

The obtained simulation results are shown in Fig. 2-
5, respectively for tracking errors y of three methods and
control signal u(t). We draw to the readers’ attention the
difference in scales of the time plot of ¢ of three methods,
both in time and in amplitude. It can be easily seen that PIN-
MRAC achieves the control objectives with superior transient
behaviour. This suggests that the proposed controller does
not have the practical admissible concerns which usually
shared by the Nussbaum-gain-based methods [6][11] and the
DREM-based techniques [12][14].

VI. CONCLUDING REMARKS

The model reference trajectory tracking problem for an
uncertain relative-degree-unity system is addressed in this
paper by means of an original PIN-based adaptive con-
troller, which allows us to completely remove the bottleneck
assumption on the prior knowledge of the high frequency
gain. Other novelties of the proposed scheme lie in the facts
that it does not use any oscillating gain function that may
periodical destabilizing the system nor employ a projection
operation to ensure the non-singularity of the control gain.
Moreover, no persistent excitation requirement is needed for
the convergence of the output error. Simulation results are
consistent with the theoretical analysis and reveal superior
transient behaviour of the PIN controller. Current research is
under way to apply the similar construction to the systems
with relative degree greater than one. The second attractive
future research direction is the extension of current results
to the MIMO cases, where the removal of assumption on the
high frequency gain matrix is more challenge and far from
solved. In addition, to further broaden the applicability of
the proposed techniques in practical settings, the assessment
of the robustness properties of the proposed PIN algorithm
is of interest too.
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